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instead of (3). Instead of being governed by the Mathieu
equation, the TM wave is governed by the general Hill’s
equation [10]. However, for the case of M1/d « 1, we can
neglect the third term because it varies as M/Ad while the
first two terms vary as 1/A%2. We then have an equation
identical in form to (3) and the problem can be solved by a
parallel treatment.

It is worth pointing out that the modal theory provides
the most rigorous approach to the problem of spatially
periodic media. Retaining only two modes in the equations,
we have derived the popular coupled wave equations from
the postulate of small index modulation. The modal theory
is shown to reduce to various previously arrived theories
under simplified  assumptions. Calculations are presented
for cases when other theories fail to apply. We stress that
the dispersion analysis techniques as discussed in this paper
are very useful tools in studying wave behavior pertaining
to periodic media. The paper is directed toward applications
to optical components in integrated optics systems. Applica-
tions of the theory to other fields are topics worthwhile
exploring.
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Generalized Analysis of Parallel Two-Post
Mounting Structures in Waveguide

OSMAN L. EL-SAYED

Abstract—An analytical expression is obtained for the reactance of
parallel two-post mounting structures having unsymmetrical strip and
gap positions and different strip and gap widths. An equivalent circuit is
derived and analytical expressions for its components established giving a
physical insight into the problem of coupling between the two gaps. The
analysis is based on deriving a variational expression for the structure
reactance from the boundary conditions at the structure position. The
theoretical results are experimentally verified for a wide range of cou-
pling conditions.

Exploitation of this model for the design of wide-band varactor-tuned
negative resistance oscillators and multidiode parallel mounts in general is
discussed.

LisT OF SYMBOLS

J(r)  Strip current density.
I(y)  Strip current.

1, Gap current.

v, Voltage drop across gap.

E,, y-directed incident electric field intensity.
E/(r) y-directed scattered electric field intensity.
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E/(r) Gap field intensity.

R Reflection coefficient at mount position.

n Free-space wave impedance equals \/ Up/eg-

S, Kronecker delta.

m,n Mode number.

k, Equals mll/a.

k, Equals »I1/b.

k. Post coupling coefﬁment equals sin k£, S(sin (k, W/2)/
(k. W[2)).

k,. Gap coupling coefficient equals cos kh(sin (k,g/2)/
(k,9/2)).

A Free-space wavelength.

A Guide wavelength (dominant mode).

k Free-space wave number equals 2IT/4.

I,, Guide wave number equals Vk,2 + k2 — K%

kK’ Dominant wave number equals 2IT/4)) = (I'14//)-

Z, Guide characteristic impedance equals (2b/a)n(4,/).
Distribution function given by
1, forS—E<x<S+Z
u(x) = 2 2
0, elsewhere.
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Fig. 1. Cross section of the rectangular guide showing the structure

under study and its parameters.

0(y)  Distribution function given by

1, fooh—Z<y<n+?
0(y)={ orRmy Sy S<hEy

0, elsewhere.

LILN Superscripts indicating that the quantity is re-
spectively relevant to strip I, strip II, or both
strips.

I. INTRODUCTION

ARALLEL two-post mounting structures are frequently
used to couple two active or passive devices to a
rectangular waveguide or cavity. In this type of mount both

devices are mounted in separate gaps along two separate .

posts positioned in the same cross section of the guide.

A typical circuit in which this mounting structure is used
is the broad-band varactor-tuned Gunn oscillator. It may
also be used for multiple Gunn diode oscillators, p-i-n
diode samplers, and commutators and varactor-tuned
filters. : '

For the investigation of the mount configuration yielding
the optimum coupling between the different elements, a
lumped equivalent circuit for the mount is needed. The
development of such a circuit will be our main concern
here.

In a previous publication [1] we have studied the special
case of the symmetrical mount where the posts are identical
and symmetrically disposed with respect to the center of the
guide, the gaps being at the same height. More recently,
Chang and Khan [2] analyzed the coupling between two
narrow transverse strips unsymmetrically located in the
same cross section of a rectangular waveguide by extending
to the two-post case the constant current density used by
Collin [3]. In this paper, we treat the most general con-
figuration of parallel double-post mounting structures by
extending Lewin’s analysis of a single post [4] to the
double-post case.

II. THEORETICAL ANALYSIS

The structure under study is shown in Fig. 1. The strips
are assumed to be infinitesimally thin and perfectly con-
ducting. Two impedances Z,' and Z,"" are placed in the
gaps of strips I and II, respectively.
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In general, mounting structures may be tackled either as
an antenna system radiating in the waveguide [1], [5] or

~as an obstacle in the waveguide [4]. In the following

analysis the mount will be dealt with as an obstacle. A
dominant mode (TE,,) wave is assumed to be incident
on the mount, thus inducing, in general, two different
currents in the posts. These currents, which are assumed
to be uniformly distributed across the strips, will develop
a voltage drop across each gap. Resulting gap fields will be
assumed uniform all over the gaps. .

A. Determination of Gap and Scattered Fields in Terms
of Strip Currents

Since the strips are not uniform along the y direction,
both strip currents will have a nonuniform distribution
along the y direction. These current distributions are,
a priori, unknown but will be expanded in a general orthog-
onal set of harmonic functions of period 25

N=LIL (1)

INy) = ;0 (2 — )L, cos k,y

The current densities are then given by

Jir) = io %‘%) Il cos k,y u!(x)5(z)  (2a)
n= 1

JUr) = io 2-9 LY cos k,y u"(x)5(z).  (2b)
n= 2

Considering that the currents J,' and I,'" flowing through
the elements (Z,',Z,") present in the gaps are respectively
equal to the average current in each gap, we can write

- ,.20 @ - 6Lk, M. 3)

The voltage drops and electric fields in the gaps are then
given by

o = —INZ}N @)
E(r) = 44 (00 (3)6(2) (52)
By = 128 o9 (5acz). (5b)

2

The determination of the scattered y-directed electrical field
E(r) follows by using the expression

E(r) = —joouo f G(r | PYLIYE) + Jr)] v
y

where G(r | r') is the §-9 component of the dyadic Green’s
function for a rectangular guide [1]:

© o R ] 2_k2
ooir - § 5 200

=0m

_rmn!z_z'l

. . ,
- sin k.x sin k,x’ cos k,y cos k,y'e
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This gives

a1 v 2 3 )(k? — k)
E(r) = - L % abk’T,

akn 0 m=1

LKt + LY, sin k,x cos k,ye™ Tl (6)

Let the y-directed electrical field of the incident TE,, wave
(E;,) be given by
E,, = sin (E’-‘) oo, %
a

The reflection coefficient R is then obtained by taking the
ratio of the dominant mode back-scattered field to the
incident field at the mount position

Er(n = 0, m = 1)
Ein

R =

z=0
= f—b [k, ! + I%, ] ®)

B. Boundary Conditions

In this section the boundary conditions are exploited,
together with the relations established in Section 1I-A to
derive a variational expression for the mount impedance
as viewed from the waveguide, in terms of the currents
spatial harmonics (which are still unknown).

"The boundary conditions, at the mount, are such that the
sum of the y-directed incident and scattered electrical fields
vanishes all over the two strips except at the gaps where it is
respectively equal to the gap fields.

[Ein + E(N]u"(x)é(z) = ES(r),

Integrating the preceding equality with respect to x, over
each post, we obtain, respectively,

bl =i B X,

N =1L

@ — 5)(0 — k)
T,

kLYt + L1k, T] cos k,y = — L)ZJ6(3) ()
g1

2 - 6n)(k2 - kyz)
rmn

k,, n_ _’Il_c ; ;
1

“Kpm L1 ,,'kp,,,I + I,,"kpm"] cosk,y = ;— I y"Zd"0“( ». (10
2

It is to be noted that the integrations over x of the bound-
ary condition equations were carried in order to bring out
the dominant mode term in the form of the bracketed term
in the right-hand side of (8).

In order to obtain a variational expression for the mount
impedance, we multiply (9) and (10), respectively, by I'(y)
and I'(y), integrate the resulting equations with respect to
y from O to b, and add the two obtained equations. This

gives

Z
b[IoIkpll + Iollkmll] _70 [Iolkpll + IOHkplﬂ]z

_ _1_1_°° (2—5)(k2—k2)
. [Inlkpml + Innkpmn 2 _ IgIZZdI + I;IZZd“ (1 1)

where the prime between the summation symbols indicates
that the termn = 0, m = 1 is excluded from the summation.
Dividing (11) by Z,[I,'k,," + I,"k,,""]? and substituting
from (8), we obtain
2 -46)1 — kyz/kz)

1{1+R, kK& &
E(R) 222 T,,

( . kpm 4 In" kpm_{l)z
Iolkpl + IOHkpln

Iglz(ZaI/Zo) + I;lz(zan/zo)'

: 12
(Iolkm + IOIIkmll)Z ( )

It can be readily shown that the left-hand side of (12) is
equal to the normalized obstacle impedance z,, = (Z,,/Z,).
Moreover, if we refer all the quantities to the center of the
guide and normalize the impedances, (12) can be rewritten
as
2~ 8)(1 — kK

0

k ©
5 & ; L
I,(kpmllkp,) =+ I ll/(kpmll/kmll)
I Ir III/
(I I:)ZZdI/ + (III/)2 s
(I Ir IIII)Z

(13)

where
N _ yNL N
In = In kpl ’

n=0,12,---,00, N=LI (14)

LY = 1, (15)
N z,

= ] 16

Z4 Zo(kplN)z ( )

C. Evaluation of the Currents Spatial Harmonics and
Obstacle Impedance

In order to express the mount impedance only in terms of
frequency and the mount geometrical parameters, the dif-
ferent currents spatial harmonics should be evaluated and
substituted in (13). For this we proceed as follows. _

1) By exploiting the orthogonality. of the different terms
of (9) and (10), we obtain expressions for the different
currents spatial harmonics (I L1 in terms of the voltage drops
across the gaps v,' and v,'

2) Referring to 3) and (4), we can see that the gaps
voltage drops are themselves expressed in terms of the
currents spatial harmonics. Thus, substituting by the expres-
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Xm

("el - Xm) ("zi— Xm)

Fig. 2. Equivalent circuit for the structure (referred to the center of
the guide) when the two gaps are short circuited.

sions obtaihed in step 1), in (4) we can express the gap
voltage drops in terms of the mount parameters.

3) Substituting again by the expressions obtained in step
2) for o}" into those found in 1), we obtain the required
expressions for the currents spatial harmonics and hence
the final expression for z,.

The details of the aforementioned mathematical manip-
ulations can be found in the Appendix and can be seen to
lead to the following expression:

I _ I _
('xe - xm) + (xe - xm) + 1/YM
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Xm
1 I
(%=%m) (x% - xm
A
12 ¢ b4 YH i 24
%4 Xg Xq Z4

Fig. 3. Equivalent circuit for the structure under study (referred to
the center of the guide.)

coupling network corresponding to all n > 0 with the
coupling network corresponding to n = 0 (Fig. 3).

It can be readily seen that the obtained expression for z,,
[see (17)] fits the equivalent circuit just described. This

17

[ 1, (e = %) - (1Y) ][ 1 (" = Xn) - (1Y) ]

L LG Gt =) + G = ) + T et - x) M - x) + (U]
[L+ & = xn) - (/%) ] [ 1, " = %) - (1/Y) ]
LGS =)+ 6 =)+ (U] LT T = )+ 6T = x) + (1Y)

D. Determination of Equivalent Circuit Configuration

In order to determine the configuration of the equivalent
circuit, we will first consider the special case where the two
gaps are short circuited (z," = z,'¥ = 0). It can be readily
seen that in this case

ILV=1" =0, foralln>0
J A A v—°(x"—x)
g — 10 T D e m
0
LY = L = 2 () - x,)
g DO
1 _ no_

xt 4+ xM - 2x,

The preceding equations are seen to be satisfied by the
equivalent circuit of Fig. 2, which is the same as that found
by Chang and Khan [2]. It represents the coupling between
the posts due to all the modes n = 0, m = 1,2, -,00, X,
being the coupling impedance and x,'x,!" the impedance
of each post, respectively, when the other is absent.

In the general case, beside the coupling due to the modes
n = 0, further coupling occurs due to all the modes n > 0.
This can be accounted for by an infinite number of IT coup-
ling networks connected in parallel between the two gaps,
each one corresponding to a value of » [1] The complete
equivalent circuit is obtained by combining the resultant IT

enables us to give the analytical expressions for each of its
elements.

A further evidence of the validity of this equivalent cir-
cuit is brought by the fact that the same corfiguration was
found in [1] although the problem was dealt with as a
system of coupled antennas. We can also verify that the
expressions for the different components reduce to those
obtained in [1] for the special case of symmetrical mount.

III. EXPERIMENTAL VERIFICATION

Measurements of the mount impedance, as viewed from
the waveguide port, were carried out in conventional X-band

" rectangular guide, over a wide frequency range for different

combinations of strip and gap positions. The results were
compared to theoretical values. .

In Fig. 4(a)-(c) strip I was kept in the samie position
(Si/a = 0.5) while strips II were respectively positioned at
Sy/a = 0.65, 0.75, and 0.85. In the three cases the gaps
were positioned at the bottom of the guide and had the
same widths g, = g, = 0.8, 1.6, 2.4, and 3 mm. In Fig. 5
each of the two gaps was alternatively short circuited while
the other remained open (S /a = 0.5, S,/a = 0.85). These
configurations correspond to the cases Z,! = 0, Z,' =
and vice versa. In Fig. 6, the gap of strip I was maintained
at the bottom of the guide while the height 4, of the other
gap was varied between 0.126 and 0.88b, the gap widths
being equal. On the whole, experimental results show a good -
agreement with theoretical ones over a wide range of coup-
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Fig. 4. Obstacle reactance as a function of frequency for different positions of strip II: Si/a = 0.5; W, = W, = 2 mm;
g1 =92 =g hy = h; = g/2.(a) S,/a = 0.65. (b) S,/a = 0.75.(c) S,/a = 0.85. O Experimental point. — Theoretical curve.



EL-SAYED: TWO-POST MOUNTING STRUCTURES

Xob

0.2}

= 2.4 mm

=0
2

{CGH:)

Q

02}

Fig. 5. Obstacle reactance as a function of frequency for different
values of gap impedances (Z,! and Zi"). O Experimental point.
— Theoretical curve.

ling conditions as long as the gap widths (g,,9,) do not
exceed b/4.

It must be noted that the mount configurations tested
were chosen so that the high-order components of the
equivalent circuit (x,}, x,", 1/Y)) are not masked from the
waveguide port by high impedance values for x,, x,!, and
x,. This is specially the case in Fig. 6 where the anti-
resonance frequency is very sensitive to the values of the
high-order components.

IV. INVESTIGATION OF OPTIMUM MOUNT CONFIGURATIONS

Although the analysis has been conducted for two flat
strips, the results can be extended to the case of two
cylindrical posts through the introduction of an equivalence
relation between strip widths (W) and post diameters (d) of
the form W = ¢d where ¢ is an experimentally determined
constant [1], [5]- In addition, two identical series reac-
tances should be introduced in series to account for the
phase difference between reflected and transmitted waves
due to the finite dimensions of the posts in the z direction [1].

The large variety of possible configurations implies that
the experimental constants should be determined each time
for a definite configuration.

However, the value of the established equivalent circuit
lies in providing a good physical insight into the problem
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Fig. 6. - Obstacle reactance as a function of a frequency for different
values of gap height. Sy/a = 0.5; Sy/a = 0.75; W; = W, = 2mm;
g1 = g2 = 2.4 mm; hy/b = 0.12; hy/b = 0.25, 0.33, 0.5, 0.88.

Fig. 7. Simplified form of obstacle equivalent circuit.

of coupling two diodes in a parallel mount, thus permitting
the investigation of optimum mount configurations for
multidiode circuits.

Let us investigate, for instance, the optimum configura-
tion, for broad-band varactor-tuned Gunn oscillators. In
order to do so, the equivalent circuit of Fig. 3 is reduced to
that of Fig. 7 by a A/Y transformation, and the values of
the components xs', xs'', and x5,, computed for different
post and gap coupling conditions (Figs. 8~10).

In general, wide-band tuning is achieved when x4, x4,
and xg,, are small and do not show large variations within
the frequency band of interest. Inspection of Figs. 8-10
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Fig. 8. Strip I series reactance (xs') as a function of frequency for different values of gap II height (%,). Sy/a = 0.5;
Wi =W, =2mm; g, =g, =24 mmj h/b =0.12; h,/b = 0.12 — 0.88. (a) S,/a = 0.65. (b) S,/a = 0.75.

(©) Ss/a = 0.85.

shows that these conditions are fulfilled over the whole X
band when the posts are closely coupled around the center
of the guide with one gap at the bottom of one post and
the other gap at the top of second post. This holds whether
the posts are symmetrical or not with respect to the guide

center. This confirms the experimental results obtained by
Joshi [6]. This same configuration can also be used for
coupling two identical Gunn diodes to the same cavity.
The parallel double-post mount can also be exploited for
the design of mechanically and/or electronically tuned
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Fig. 9. Strip II series reactance (xs') as a function of frequency for different values of gap II height (4,). Si/a = 0.5;
W, =W, =2 mm; g; =g, = 2.4 mm; h/b = 0.12; h/b = 0.12 - 0.88. (a) S:z/a = 0.65. (b) Sz/a = 0.75.

©) Sy/a = 0.85.

bandpass filters. To obtain a bandpass, the two branches
(xs' + x,") and (xs" + x,") of the equivalent circuit (Fig.
7) should resonate in parallel at the required frequency, the
impedance of the mount being small outside the passband.
This performance can be obtained for any frequency in the
band with a configuration similar to that tested in Fig. 6
where we can see that by changing gap IT height (or its
width) we can obtain coarse (or fine) mechanical tuning.
If in gap II a varactor is introduced, electronic tuning can
be achieved.

The preceding examples, among many others, demon-
strate the usefulness of the obtained model in the design
and the optimization of multidiode circuits in rectangular
waveguide. ‘

V. CONCLUSION

A variational expression for the “obstacle” impedance
of the most general configuration of parallel double-post
mounting structures has been established. Starting from this
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Fig. 10. Guide coupling reactance (xs) as a function of frequency for different values of gap II height (h.). §1/a = 0.5;
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expression, a lumped equivalent circuit has been developed
and analytical expressions for its components derived.

Theoretical results were experimenitally verified over a
wide range of frequencies and coupling conditions. Optimum
mount configurations for wide-band varactor-tuned Gunn
oscillators, double-diode Gunn oscillators, and mechani-
cally (or electronically) tuhed bandpass filters were discussed,
demonstrating thereby the usefulnéss of the model as a tool
for the design and optimization of multidiode circuits in
rectangular waveguide.

APPENDIX
Let us define the following quantities:

. k/ 0 (k N/k N)Z
xeN - i Pm | 7p1 Al
2 m§2 rmo ( )
r I I I II
Xy = ] & Z (kpm kpm /km km ) (A2)
2 m=2 rmo
a1 k2R (k Nk N)Z |

x N i y Dm Py A3

gn J 2 mgl rmn kgnN ( )
. k' Y 1 —k 2/k2 (k I, k ")/(k | k II) :

x = i y Pm Pm P1 P1 Ad
w =7 X T, k, T, ! A9
ZeN = % + xeN (AS)
Iy =% + Xy (A6)
v = 2 (A7)

Zo
oV = LV, = - [ Y- 5,,)1,,N'kgnN] 2" (A8)

where N = LII
1) Substituting by (14)-(16) and (A1)-(A8) into (9) and
(10), we obtain, respectively,

0
. w .
Iz + Iz, + 2 Y x,1 k" cos k,y
n=1
9n ""gn

+2 21 xpr, Ik, Tk, M cos k,y = vy + f— v,"0'(y) (A9)
n= 1

oo
IFzM + Iz, + 2 Y x, "LFKN? cos kyy
=1

n=

+ 2 n; Xp I kg, ke, 1 cOS Ky y
= vy + b vy 8"(»). (A10)

gz

Integrating (A9) and (A10) over y from O to b and solving
the resultant equations for I," and ', we obtain

r, 1 I
, v vz, — U, Z
LY =22 -z,) + 2= ¢ (AlD)
0 ) ]
1,1 ', 11
, v v, 2z, — U, Z
LW =2t -z, + e g e (A12)

Dy Do

where D, = z,'z." — z,2.
Similarly, if (A9) and (A10) are multiplied by cos k,y,
integrated over y from 0 to b and the resultant equations
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solved for I,' and IV, wé obtain
I, I i
Vg Xgn — Uy XM,
D,
I}
— v, xy,
D

LYk, = (A13)

i, I
Jwgp u Y% g
n gn

(Al4)

; - I M2
where D, = x, 'x,, Xpr,”

2) Substituting by (A11)-(A15) into (A8), we obtain two
simultaneous equations for v," and v, which when solved
together give

v | G __U_O (Zen - Zm)YZ + (Zel - Zm)YS (Als)
g .Do | F
v w _ _ & (ZeI - Zm)Yl + (ZeH - Zm)YE) (A16)
y D, F
where
11 © I
Y, =L 4%+ ¥ 2k
Zy Do n=1 Dn
I © i
Y2=%+-Z.—e+ Y 2%
Z4 DO n=1 D”
. z A X
Y = - + 2 Mn
3 Do ngl Dn

F = Y1Y2 - Y32.

3) Substituting with the expressions obtained for v," and
v, into (A8), (A11)-(A14), we obtain the required expres-
sions for 1, L', I,Y, I,"'; L.V, and I,

Finally, we substitute into (13) by the obtained expres-
sions for the gap and spatial harmonic currents, and (17)

is obtained in which

1 o x M- x :
Y!i=— +2 Zon My Al17
g Zdl n;I Dn ( )
1 Q Xy — X
y;" = +2 Z g > My (A18)
Zd n=1 n
Yy =2 Y 3, (A19)
n=1 Dn
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